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We obtain an equation descr ib ing  the diffusion of par t ic les  suspended in a liquid. This  
equation differs  f r o m  F i ck ' s  by the t e r m  02c/0t 2, which takes account  of the fact  that the 
par t ic le  d i sp lacement  veloci ty  is finite in the diffusion process .  

P a r t i c l e s  suspended in the flow of a liquid or gas may  undergo chaotic fluctuating motion imposed 
on the a v e r a g e  motion of the d i spersed  phase as  a whole. These  fluctuations of individual par t ic les  or 
groups of par t i c les  (packets) a r e  pa r t i cu la r ly  intensive in concentrated and compara t ive ly  coa r se  d i s -  
pe r s ive  s y s t e m s  (the pseudoliquefaction or pneumatic  t r a n s p o r t  of la rge  par t ic les ,  etc.). In many  cases  
they have a definite effect  on both the theore t ica l  p rope r t i e s  of the d i spe r s ive  s y s t e m  and the heat and m a s s  
t r a n s p o r t  p roces s  in it  (a rev iew of exper imenta l  invest igat ion on fluctuations and their  effect  on heat  and 
m a s s  t r a n s p o r t  in the pseudoliquefied l ayer  is given, for example  in [1, 2]). 

One of the mos t  impor tan t  p rob lems  in p rac t i ce  is the descr ip t ion  of the effect  of these  fluctuations on 
the d i sp lacement  of the d i spersed  phase in the sys tem.  For  var ious  appl icat ions it is des i r ab le  to have a 
means  of continuously desc r ib ing  the d isp lacement  using a different ial  equation, but without any ana lys i s  of 
the r andom behavior  of the actual  s epa ra t e  par t ic les .  F r o m  the analogy between the suspended par t ic les  
and the molecu les  of a gas,  or  f r o m  the analogy between the d ispersed  phase and a turbulent liquid, it is 
na tura l  to c h a r a c t e r i z e  the in tensi ty  of the d i sp lacement  using the effect ive diffusion coefficients of the 
par t i c les  in the sys t em.  This is usual ly  done, the s imple  F ick  diffusion equation, which is s t r i c t ly  valid 
only as Wd/W* - -  r being used, without sufficient justification. That this equat ion can be applied to the 
diffusion of gases  does not give r i s e  to doubts in view of the high veloci t ies  of the molecules  in t he rma l  
motion. But for  suspended par t i c les ,  the veloci t ies  w* and w d a r e  usually comparab le  with each other and 
in this connection it is n e c e s s a r y  both to have a s t r i c t e r  just if ication for  the diffusion analogy and to r e -  
fine F ick ' s  equation for  this case .  

The diffusion of suspended par t ic les ,  de te rmined  by their  f luctuating motions,  has two fur ther  c h a r a c -  
t e r i s t i c s  by compar i son  with the diffusion of the molecu les  of a gas.  F i r s t ,  the fluctuations of the pa r -  
t icles a r e  usual ly  anisot ropic ,  so that  in genera l  we have to deal not with a unique sca l a r  diffusion coef-  
f icient,  but a t ensor  of diffusion coefficients  D = l] Dij]l, as  occurs ,  for  example ,  in diffusion in a turbulent  
field. Second, the spat ia l  sca le  of the fluctuations (,'the mixing length") in many  cases  is comparab le  with 
the d imensions  of the appara tus  containing the d i spe r s ive  sys tem.  A l imi ta t ion in the diffusion analogy 
under  these  conditions is r epea ted ly  emphas ized  by Todes and his col leagues  is indicated, for  example ,  in 
[21. 

To obtain diffusionequat ions we use  the method below which was developed in [3]. We a s s u m e  that the 
par t ic les  a r e  in equi l ibr ium in the sense  that the total  a v e r a g e  fo rce  on each par t ic le  is zero.  This impl ies  
that  the ave rage  veloci ty  of any par t ic le  is a lso  zero ,  or  can be made zero  by an appropr ia t e  choice of the 
coordinate  sys tem.  In addition, we a s s u m e  that the d isequi l ibr ium of the s y s t e m  is smal l ,  i .e . ,  the diffu- 
sion flux J of par t i c les  is smal l .  In this case  the dis t r ibut ion function for  the fluctuating ve loc i t ies  w of the 
pa r t i c les  can be wr i t ten  approx ima te ly  as  [3] 

1 3 
f(w; r, t ) ~ - - c * ( w ;  r, t ) + - - w J * ( w ;  r, t). 

4n rn 4n mw ~ (1) 
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Here  c*w2dw and g*w2dw a r e  the m a s s  concentrat ion and the m a s s  flux of the par t ic les ,  the veloci ty  of 
which l ies in the range  (w, w + dw) in modulus 

c*(w; r, t) = mj'/~(w; r, t l d w o ,  J*(w; r, t ) =  mSf(w;  r, t)wdwo, 

c (r, t) = i c* (w; r, t)w2dw, J (r, t) = i J* (w; r, t)w~dw. 
o 0 

(2) 

We see  that when f(w; r ,  t) is given by (1), the f i r s t  of (2) holds identically.  

If we neglect  the in te rac t ion  of the par t ic les  with each other and with the r andom fluctuations in the 
support ing flow, we can take the equation of continuity as defining the dis t r ibut ion function 

~ + w ~ = o, (3) 
Ot o r 

this being a par t i cu la r  case  of Liouvi l le ' s  equation when the ave rage  fo rce  on a par t ic le  is zero.  

To take account of the in teract ions  we consider  the pa r t i c l e s  in some  e lement  of volume of the i m -  
purity,  taken below as unit volume,  and la ter  moving out of that volume. We desc r ibe  this volume fu r the r  
as  a "black box," ignoring the detai ls  of the in te rac t ion  p roces se s  in it. To do this we introduce the va r i ab le  
q(W, W') which is the probabi l i ty  that the par t i c les  in the box with ve loc i ty  w = ww0, where  W i w_ ]w0i[, 
leave  it with veloci ty  w '  = ww~, where  W~ = [w~il. Thus, we consider  the sca t t e r ing  of the par t ic les  by the 
"black box" under the condition that the modulus of the par t ic le  veloci ty  r e m a i n s  constant.~ Obviously this 
is  i m p e r m i s s i b l e  if  the period in the "black box," i .e. ,  the in terac t ion  of the par t i c les  with each other  and 
with the fluctuations in the supporting flow do not change the ave r age  pulsation energy  of the par t i c les  (cf. 
[3]). 

The va r i ab le  q(W, W') can be wri t ten  as 
3 

q (W, W') = (1 - -  q) I + q (W'SW), S = []Sul ], ~ S u = 1, S~j >/O, 
/ = l  

where  I is the unit t ensor ;  S is the ma t r ix  (tensor) of probabi l i t ies ,  normal ized  by the probabil i ty  of the 
cer ta in  event, and q __ 1 is the probabi l i ty  of an a r b i t r a r y  sca t t e r ing  of the par t i c les  in the "black box." 

The e lements  Sij , with var ious  values  of j, a r e  the moduli of the d i rec t ion  cosines  of the mos t  probable  
veloci ty  of a sca t t e red  par t ic le  under the condition that the par t ic le  veloci ty  before  sca t te r ing  was in the 
d i rec t ion of the i -ax is .  The necess i ty  to introduce the angular  dependence for  the probabi l i ty  q{W, W') is 
in genera l  a s soc ia ted  with the an iso t ropy  of the sca t te r ing  of the par t ic les  in the "black box." The case  
invest igated in [3] when the probabi l i ty  of sca t te r ing  in a given di rec t ion depends only on the angle between 
the vec to r s  w and w ' ,  co r responds  to the ma t r ix  

S = (ql  - -  q2) 1 + q~ 1 . ( 4 )  

0 1 

Thus, in par t ieu lar ,  we see  that the above type of sca t te r ing  reduces  to the s imples t  i so t ropic  s c a t -  
t e r ing  if we change the definition of q.. For  the sca t te r ing  of the molecules  of a gas we usual ly  have q = ntQ , 
where  n t is the concentrat ion of the sca t t e r ing  cen te r s  and Q is the effective sca t te r ing  c r o s s  section. The 
quantity A = (ntQ)-I is the length of the mean  f r ee  path of a par t ic le  with ve loc i ty  w between success ive  
sca t te r ing  events.  

Following [3], we obtain the equation 

Oc* + 3 0 J *  Oc* 3 0 ( w J * )  3 
, w ~ - -  w - -  - - w  - -  ( w A - ~ J * ) ,  (5 )  

Ot w 2 Ot 0 r w ~ 0 r w - 

This does not imply,  of course ,  the assumpt ion  that the modulus of the ve loc i ty  of any marked  par t ic le  
is constant as  it pa s ses  through the "black box." We consider  only the a s s e m b l i e s  of par t ic les  enter ing and 
leaving and s tate  that  if the ave rage  pulsation energy  of the par t ic les  is conserved,  the number  of them 
enter ing the box with veloci ty  w is on the ave rage  equal to the number  of par t ic les  leaving the box with the 
s a m e  velocity.  
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where  we have introduced the new tensor  A, defined by the equation 

wA_ -1J * = (w J*) ~ (W'SW) dW' - -  f (WSW') w'J* dW'. (6) 

For  i so t ropic  sca t te r ing ,  or  sca t t e r ing  depending only on the angle between w and w' ,  we have A -1 
= ntQI and A = (ntQ)-lI = AI. Thus, the t ensor  A, defined in (6), can be considered as  the t ensor  of the 
effect ive lengths of the ~mean f ree  pa th ,  of a pa-rticle with veloci ty  w. 

We see  that  Eq. (5) contains t e r m s  of two types:  t e r m s  invar iant  with r e spec t  to the t r ans fo rma t ion  w 
- w ,  and t e r m s  which change their  sign under this t ransformat ion .  F r o m  (5) we obtain the following 

two equations: 

Oc* 3 0 (wJ*) A O J* wA Oc* 
0 ~ - ~ - - ~  ~-w Or ' - ~ - "  0~ - + I * ~ -  3-"  Or" (7) 

The diffusion equation in F i ck ' s  f o r m  is obtained f r o m  this when A = AI and when we ignore the 
t e r m  in M*/~t  in the second equation of (7), which co r responds  to assuming  the changes in the diffusion 
flow a r e  r e l a t ive ly  slow and, conver se ly  that the d i sp lacements  of the par t ic les  a r e  v e r y  rapid. The c o r -  
responding calculat ion was made in [3]. 

If we e l iminate  J* f r o m  (7), we obtain a unique equation for  c*: 

w o e *  ( O ~ )  2 . O~c * 
w c *  - -  - -  A (w) = w ( w A - ~ ) - ~ .  

A ( w )  O t  O t  ~ ' - -  - -  

This equation depends on the d i rec t ion  of the vec tor  w which, of course ,  is  connected with the ap -  
p rox imate  r ep re sen t a t i on  (1) for  the dis t r ibut ion function. The degree  of i ts  val idi ty  is not des t royed if in 
it  we ave rage  over  the d i rec t ions  of w. Then we obtain a new equation: 

w o e *  ( i  ) 02c* 02c* 
A ( w )  Ot ~-" w~w~f(w; r, t)dw0 OxiOxJ O# ' 

1 - (8) 

A(w) = j A T w )  f(w; r, t)dwo. 

The va r i ab le  A(w), introduced here ,  has the meaning of a s ca l a r  mean  f ree  path length for  par t ic les  
with ve loc i ty  w. In the isotropic  case  A(w) = (niQ) -1, i .e . ,  it does not depend on w. 

We introduce the a v e r a g e  mean  f r ee  path length of a par t ic le  ~ and the tensor  D of diffusion coef-  
f ic ients ,  which a r e  defined by the equations 

f w* f c* (w; r, w* w 3 c*(w; r, t) dw, --~-  Oi] t) f ( w ;  r, - -  = = w~wj - -  - t)dw. 
)~ A ~ )  c (r, t) c (r, t) 

(9) 

The meaning of these equations is obvious. In fact  they a r e  s imi l a r  to the cor responding  definitions 
in [3]. Then, averag ing  (8) with r e s p e c t  to the modulus of the velocity,  we obtain the equation 

- - ~  D - -  �9 

Ot 0 r 0 r 7 ~  Or2 j 

By (9), this equation can be r ewr i t t en  as 

D �9 c, trD = D u. (11) 
Ot 8 r 0 r w,2 8# 

Equations s i m i l a r  to (10) or  (11) can a lso  be wr i t t en  for  the volume concentrat ion of par t i c les  in the 
sys t em,  p, or for  the poros i ty  of the d i spe r s ive  s y s t e m  ~ = 1 - p. F r o m  (10) and (11) we see that the dif-  
fusion equation in F i ck ' s  f o r m  is valid for  

. ~ wg ~ I or D ~ T  aw*~, (12) 
T d W *  ~.0* 

where r d is  a ch a r ac t e r i s t i c  t ime of the diffusion p rocess ;  and D is a typical  value of the diffusion coeff i-  
cient. 
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The re la t ions  (12) fa i l  to hold when the mixing length of the par t ic les  in the sy s t em i n c r e a s e s  and 
their  f luctuation veloci ty  dec reases .  Es t ima tes ,  based on the exper imenta l  r e su l t s  in [1, 2], show that 
F i ck ' s  equation is a ve ry  rough approximat ion  for  the investigation of nonsta t ionary  diffusion in d i spe r s ive  
s y s t e m s  and mus t  be rep laced  by the more  accura te  Eq. (10) or  (11). Moreover ,  it is this las t  equation 
which we mus t  use  in calculat ing many  of the va r i ab l e s  which a r e  of i n t e re s t  in va r ious  technological  p ro -  
c e s s e s  and in conditions of s ta t ionary  diffusion. As an example  we can indicate the calculat ion of the t ime 
a par t ic le  spends in the pseudoliquefied layer  when the charging ra t e  is constant.  

NOTATION 

c is the mass concentration of the particles; 
J is  the m a s s  diffusion flux; 
w* is the mean  square  veloci ty  of pulsation of the par t ic les ;  
w d is the diffusion ra t e  (the ra t io  I / c ) ;  
f(w; r ,  t) is the pulsation veloci ty  dis tr ibut ion of par t ic les ;  
D is the tensor  of diffusion coefficients;  
S is  the probabi l i ty  mat r ix ;  
A 
X(w), A(w), 

r d 
dw 
dw0 
dW 

is  the t ensor  of lengths of the mean  f ree  path of the par t i c les ;  
a r e  the sca l a r  mean  f r ee  path lengths introduced in different  ways (cf. Eqs. (7)-(9)); 
is the' cha rac t e r i s t i c  t ime  of diffusion; 
is  the volume e lement  in ve loc i ty  space;  
is  the corresponding solid angle element;  
is the solid angle e lement  in f i r s t  quadrant  of ve loc i ty  space.  

1. 

2. 
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